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Context on Classification

Binary classification

Rules: 
• Domain 𝒳 (arbitrary)
• Label set 𝒴 = {0, 1}
• Loss function ℓ!"# 𝑦, 𝑦$ = 1[𝑦 ≠ 𝑦$]

When to learn? VC(ℋ) < ∞ [BEHW89]

How to learn? ERM
• Extremely simple
• Nearly optimal sample complexity

Multiclass classification
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• Domain 𝒳 (arbitrary)
• Label set 𝒴 (arbitrary)
• Loss function ℓ!"# 𝑦, 𝑦$ = 1[𝑦 ≠ 𝑦$]

When to learn? DS(ℋ) < ∞ [BCDMY22]

How to learn? Not so clear…
• BCDMY learner is highly complex: 

subsampling, list PAC learning, sample 
compression, etc. 
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Simple algorithmic templates for 
optimal multiclass learning?



Starting point: ERM & SRM

Empirical risk minimization (ERM)   
𝐴 𝑆 = argminℋ 𝐿"(ℎ)

Structural risk minimization (SRM)
𝐴 𝑆 = argminℋ 𝐿" ℎ + 𝜓(ℎ)

Note ERM & SRM learners are proper, 
always output functions in ℋ.

ERM characterizes learning for binary 
classification, but fails miserably for 
multiclass. Why? 
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Theorem [DS14]: In multiclass 
classification, there are learnable 
classes that cannot be learned by any 
proper learner.

Learning ℋ can require emitting 
functions outside of ℋ. 
(Even in realizable case!)

Dooms ERM & SRM – phrased as 
optimization problems over ℋ. 



Proposed framework: local regularization

Key obstruction: SRM is inherently proper
• How to be improper while still 

optimizing over ℋ?

Solution: allow regularizer to depend on 
test point

• We call this a “local regularizer” 
• A(S) can “glue” actions of different 
ℎ ∈ ℋ across 𝒳
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Proposed framework: local regularization
If Yes:

⎼ Simpler algorithmic template for multiclass 
learning

⎼ Improves upon unsupervised local regularization
[ADDST (COLT ‘24)]

⎼ Reveals redundancy to one-inclusion graph
learning algorithm (don’t need unlabeled data)

If No:

⎼ Impossibility result for understanding 
multiclass learners

⎼ Suggests structure of OIGs is vital for learning 
(need unlabeled data)

See our write-up for a possible counter-
example!
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