Open Problem: Can Local Regularization Learn
All Multiclass Problems?
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Rules:
 Domain X (arbitrary)
 Label set Y (arbitrary)

* Loss function £,_,(y,y') = 1[y # y']

When to learn? DS(H') < oo [Bcomy22]

How to learn? Not so clear...

« BCDMY learner is highly complex:
subsampling, list PAC learning, sample
compression, etc.

[BCDMY22] — Brukhim, Carmon, Dinur, Moran and Yehudayoff.
A Characterization of Multiclass Learnability
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Rules:
 Domain X (arbitrary)
 Label set Y (arbitrary)

* Loss function £,_,(y,y') = 1[y # y']

When to learn? DS(H') < oo [Bcomy22]
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Simple algorithmic templates for
optimal multiclass learning?
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[BCDMY22] — Brukhim, Carmon, Dinur, Moran and Yehudayoff.
A Characterization of Multiclass Learnability
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Starting point: ERM & SRM

Empirical risk minimization (ERM) € A

_ : Theorem [DS14]: In multiclass
A(S) — argminy, LS(h) classification, there are learnable

classes that cannot be learned by any

Structural risk minimization (SRM) \pmper learner. J

A(S) = argming; Lg(h) + Y(h)

Learning H can require emitting

Note ERM & SRM learners are proper, functions outside of H .
always output functions in H. (Even in realizable case!)

ERM characterizes learning for binary Dooms ERM & SRM — phrased as
classification, but fails miserably for optimization problems over H.
multiclass. Why?
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Geometrically: h € H can be “complex” in
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Open problem: In classification, can
all learnable classes be learned by a
local regularizer? If so, with (nearly)
optimal sample complexity?
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Open problem: In classification, can
all learnable classes be learned by a
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If Yes:

— Simpler algorithmic template for multiclass
learning

— Improves upon unsupervised local regularization
[ADDST (COLT ‘24)]

— Reveals redundancy to one-inclusion graph
learning algorithm (don’t need unlabeled data)

If No:

— Impossibility result for understanding
multiclass learners

— Suggests structure of OIGs is vital for learning
(need unlabeled data)

See our write-up for a possible counter-
example!



