Open Problem: Can Local Regularization Learn All Multiclass Problems?

Julian Asilis Siddartha Devic Shaddin Dughmi

Vatsal Sharan

Binary classification

Rules:

- Domain ${\mathcal X}$ (arbitrary)
- Label set $\mathcal{Y} = \{0, 1\}$
- Loss function $\ell_{0-1}(y, y') = 1[y \neq y']$

Multiclass classification

Rules:

- Domain ${\mathcal X}$ (arbitrary)
- Label set \mathcal{Y} (arbitrary)
- Loss function $\ell_{0-1}(y, y') = 1[y \neq y']$

Binary classification

Rules:

- Domain ${\mathcal X}$ (arbitrary)
- Label set $\mathcal{Y} = \{0, 1\}$
- Loss function $\ell_{0-1}(y, y') = 1[y \neq y']$

Multiclass classification

Rules:

- Domain ${\mathcal X}$ (arbitrary)
- Label set \mathcal{Y} (arbitrary)

• Loss function $\ell_{0-1}(y, y') = 1[y \neq y']$

Binary classification

Rules:

- Domain ${\mathcal X}$ (arbitrary)
- Label set $\mathcal{Y} = \{0, 1\}$
- Loss function $\ell_{0-1}(y, y') = 1[y \neq y']$

When to learn?

How to learn?

Multiclass classification

Rules:

- Domain $\mathcal X$ (arbitrary)
- Label set \mathcal{Y} (arbitrary)
- Loss function $\ell_{0-1}(y, y') = 1[y \neq y']$

When to learn?

How to learn?

Binary classification

Rules:

- Domain $\mathcal X$ (arbitrary)
- Label set $\mathcal{Y} = \{0, 1\}$
- Loss function $\ell_{0-1}(y, y') = 1[y \neq y']$

When to learn? VC(\mathcal{H}) < ∞ [BEHW89]

How to learn? ERM

- Extremely simple
- Nearly optimal sample complexity

Multiclass classification

Rules:

- Domain $\mathcal X$ (arbitrary)
- Label set \mathcal{Y} (arbitrary)
- Loss function $\ell_{0-1}(y, y') = 1[y \neq y']$

When to learn?

How to learn?

Binary classification

Rules:

- Domain $\mathcal X$ (arbitrary)
- Label set $\mathcal{Y} = \{0, 1\}$
- Loss function $\ell_{0-1}(y, y') = 1[y \neq y']$

When to learn? VC(\mathcal{H}) < ∞ [BEHW89]

How to learn? ERM

- Extremely simple
- Nearly optimal sample complexity

[BEHW89] – Blumer, Ehrenfeucht, Haussler, and Warmuth. Learnability and the Vapnik-Chervonenkis Dimension **Multiclass classification**

Rules:

- Domain $\mathcal X$ (arbitrary)
- Label set \mathcal{Y} (arbitrary)
- Loss function $\ell_{0-1}(y, y') = 1[y \neq y']$

When to learn? $DS(\mathcal{H}) < \infty$ [BCDMY22]

How to learn? Not so clear ...

• BCDMY learner is highly complex: subsampling, list PAC learning, sample compression, etc.

[BCDMY22] – Brukhim, Carmon, Dinur, Moran and Yehudayoff. *A Characterization of Multiclass Learnability*

Binary classification

Rules:

- Domain $\mathcal X$ (arbitrary)
- Label set $\mathcal{Y} = \{0, 1\}$
- Loss function $\ell_{0-1}(y, y') = 1[y \neq y']$

When to learn? VC(\mathcal{H}) < ∞ [BEHW89]

How to learn? ERM

- Extremely simple
- Nearly optimal sample complexity

[BEHW89] – Blumer, Ehrenfeucht, Haussler, and Warmuth. Learnability and the Vapnik-Chervonenkis Dimension **Multiclass classification**

Rules:

- Domain $\mathcal X$ (arbitrary)
- Label set $\mathcal Y$ (arbitrary)
- Loss function $\ell_{0-1}(y, y') = 1[y \neq y']$

When to learn? $DS(\mathcal{H}) < \infty$ [BCDMY22]

Simple algorithmic templates for optimal multiclass learning?

[BCDMY22] – Brukhim, Carmon, Dinur, Moran and Yehudayoff. *A Characterization of Multiclass Learnability*

Starting point: ERM & SRM

Empirical risk minimization (ERM) $A(S) = \operatorname{argmin}_{\mathcal{H}} L_S(h)$

Structural risk minimization (SRM) $A(S) = \operatorname{argmin}_{\mathcal{H}} L_S(h) + \psi(h)$

Starting point: ERM & SRM

Empirical risk minimization (ERM) $A(S) = \operatorname{argmin}_{\mathcal{H}} L_S(h)$

Structural risk minimization (SRM) $A(S) = \operatorname{argmin}_{\mathcal{H}} L_S(h) + \psi(h)$

Note ERM & SRM learners are proper, always output functions in \mathcal{H} .

ERM characterizes learning for binary classification, but fails miserably for multiclass. *Why?*

Starting point: ERM & SRM

Empirical risk minimization (ERM) $A(S) = \operatorname{argmin}_{\mathcal{H}} L_S(h)$

Structural risk minimization (SRM) $A(S) = \operatorname{argmin}_{\mathcal{H}} L_S(h) + \psi(h)$

Note ERM & SRM learners are proper, always output functions in \mathcal{H} .

ERM characterizes learning for binary classification, but fails miserably for multiclass. *Why?*

Theorem [DS14]: In multiclass classification, there are learnable classes that cannot be learned by *any* proper learner.

Learning $\mathcal H$ can require emitting functions outside of $\mathcal H$. (Even in realizable case!)

Dooms ERM & SRM – phrased as optimization problems over \mathcal{H} .

Key obstruction: SRM is inherently proper

• How to be improper while still optimizing over \mathcal{H} ?

Key obstruction: SRM is inherently proper

• How to be improper while still optimizing over \mathcal{H} ?

Solution: allow regularizer to depend on test point

- We call this a "local regularizer"
- A(S) can "glue" actions of different $h \in \mathcal{H}$ across \mathcal{X}

Key obstruction: SRM is inherently proper

• How to be improper while still optimizing over \mathcal{H} ?

Solution: allow regularizer to depend on test point

- We call this a "local regularizer"
- A(S) can "glue" actions of different $h \in \mathcal{H}$ across \mathcal{X}

Key obstruction: SRM is inherently proper

• How to be improper while still optimizing over \mathcal{H} ?

Solution: allow regularizer to depend on test point

- We call this a "local regularizer"
- A(S) can "glue" actions of different $h \in \mathcal{H}$ across \mathcal{X}

Formally, $\psi : \mathcal{H} \times \mathcal{X} \to \mathbb{R}_{\geq 0}$, $A(S)(x) \in \{h(x): h \in \operatorname{argmin}_{L_{S}^{-1}(0)} \psi(h, x)\}$

Key obstruction: SRM is inherently proper

• How to be improper while still optimizing over \mathcal{H} ?

Solution: allow regularizer to depend on test point

- We call this a "local regularizer"
- A(S) can "glue" actions of different $h \in \mathcal{H}$ across \mathcal{X}

Formally, $\psi : \mathcal{H} \times \mathcal{X} \to \mathbb{R}_{\geq 0}$, $A(S)(x) \in \{h(x): h \in \operatorname{argmin}_{L_{S}^{-1}(0)} \psi(h, x)\}$

Intuition: ψ encodes *local* preferences on \mathcal{H} , rather than one *global* preference

Geometrically: $h \in \mathcal{H}$ can be "complex" in places, "simple" in others

Formally, $\psi : \mathcal{H} \times \mathcal{X} \to \mathbb{R}_{\geq 0}$, $A(S)(x) \in \{h(x): h \in \operatorname{argmin}_{L_{S}^{-1}(0)} \psi(h, x)\}$

Intuition: ψ encodes *local* preferences on \mathcal{H} , rather than one *global* preference

Geometrically: $h \in \mathcal{H}$ can be "complex" in places, "simple" in others

Open problem: In classification, can all learnable classes be learned by a local regularizer? If so, with (nearly) optimal sample complexity? Formally, $\psi : \mathcal{H} \times \mathcal{X} \to \mathbb{R}_{\geq 0}$, $A(S)(x) \in \{h(x): h \in \operatorname{argmin}_{L_{S}^{-1}(0)} \psi(h, x)\}$

Intuition: ψ encodes *local* preferences on \mathcal{H} , rather than one *global* preference

Geometrically: $h \in \mathcal{H}$ can be "complex" in places, "simple" in others

Open problem: In classification, can all learnable classes be learned by a local regularizer? If so, with (nearly) optimal sample complexity? If Yes:

- Simpler algorithmic template for multiclass learning
 - Improves upon *unsupervised local regularization* [ADDST (COLT '24)]
- Reveals redundancy to *one-inclusion graph* learning algorithm (don't need unlabeled data)

Open problem: In classification, can all learnable classes be learned by a local regularizer? If so, with (nearly) optimal sample complexity?

If Yes:

- Simpler algorithmic template for multiclass learning
 - Improves upon *unsupervised local regularization* [ADDST (COLT '24)]
- Reveals redundancy to *one-inclusion graph* learning algorithm (don't need unlabeled data)

If No:

- Impossibility result for understanding multiclass learners
- Suggests structure of OIGs is vital for learning (need unlabeled data)

Open problem: In classification, can all learnable classes be learned by a local regularizer? If so, with (nearly) optimal sample complexity?

If Yes:

- Simpler algorithmic template for multiclass learning
 - Improves upon *unsupervised local regularization* [ADDST (COLT '24)]
- Reveals redundancy to *one-inclusion graph* learning algorithm (don't need unlabeled data)

If No:

- Impossibility result for understanding multiclass learners
- Suggests structure of OIGs is vital for learning (need unlabeled data)

See our write-up for a possible counterexample!