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Distribution 𝒟 on 𝒳
(Realizable learning: 𝒟 arbitrary)

Ground truth ℎ∗ ∈ ℋ

Goal
Given iid draws from 𝒟 (labeled by ℎ∗),  
guess ℎ∗! 

Judged by error, 
ℙ$~𝒟 𝑓 𝑥 ≠ ℎ∗ 𝑥

Can ℋ be learned with error → 0 as 
# samples →∞?  
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ℋ shatters S = (𝑥&, … , 𝑥') when 
ℋ|( = {0, 1}'

VC ℋ = size of largest shattered set

Binary classification solved

An observation: VC dimension 
only “knows” about finite 
projections of ℋ…

Why is that enough?
Fundamental theorem: 

ℋ is learnable ⟺ VC ℋ < ∞.
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⎼ If ℋ’s finite projections look good, then 
ℋ is learnable

⎼ Equiv: if ℋ is not learnable, it has 
arbitrarily bad finite projections



Binary classification is “compact”

VC theory reveals compactness: 

⎼ If ℋ’s finite projections look good, then 
ℋ is learnable

⎼ Equiv: if ℋ is not learnable, it has 
arbitrarily bad finite projections

Why does this work? 

When learning ℋ, distribution 𝒟 can 
have infinite support, even be 
continuous! 

Considering finite projections 
ℋ|! doesn’t pick up on hardness of 
learning these distributions…
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2. Let d = d ℋ be the size of the largest shattered set
3. Prove ℋ is learnable ⟺ 𝑑 < ∞
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𝒳 = ℝ, 𝒴 = {0,1}
ℋ = {ℎ ∶ ℎ)&(1) < ∞}

Given ℎ∗, 𝒟 must be supported 
on (ℎ∗))& 1 . I.e., only see the 
label 1

Learner must be proper, emit 
an ℎ ∈ ℋ

In English: 
⎼ Ground set 𝒳
⎼ Distribution 𝒟 over 𝒳 (finite support)

⎼ Given iid samples from 𝒟, pick 
finite S ⊆ 𝒳 with maximum      
𝒟-measure

When 𝒳 is finite, trivial. 
Pick S = 𝒳! 

What about 𝒳 = ℝ?



EMX learning: noncompact 
For infinite 𝒳, learnability 
depends on 𝒳
(Such that ℋ is learnable ⟺|𝒳| < ℵ!. Thus, 
undecidable when 𝒳 = ℝ.)  

If 𝒳 too large, ℋ is not 
learnable. Even though all its 
finite restrictions are easy!

Failure of compactness! 
(When learners are required to be proper) 
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EMX learning: noncompact 
For infinite 𝒳, learnability 
depends on 𝒳
(Such that ℋ is learnable ⟺|𝒳| < ℵ!. Thus, 
undecidable when 𝒳 = ℝ.)  

If 𝒳 too large, ℋ is not 
learnable. Even though all its 
finite restrictions are easy!

Failure of compactness! 
(When learners are required to be proper) 

Where and why does compactness 
appear in improper supervised 
learning?

In light of EMX learning, why do 
standard learning paradigms happen
to be compact?  



Our Results

Let: 
⎼ 𝒳 = arbitrary set
⎼ 𝒴 = proper metric space
⎼ ℋ = hypothesis class
⎼ “Finite projection” of ℋ = finite subset of ℋ|( for finite S ⊆ 𝒳

Theorem: For realizable learning, the following are equivalent,
1. ℋ can be learned with transductive sample complexity 𝑚
2. Any finite projection of ℋ can be learned with complexity 𝑚
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Compact ⟺ closed & bounded
• ℝ! and its closed subsets (any norm)
• Any finite space
• Any compact space 
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Very general and exact form of compactness! 

What if 𝒴 isn’t proper?
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Improper 𝒴: compactness can fail by at least most a factor of 2. 

Complete characterization of compactness for realizable learning with metric losses!

Our Results

Let: 
⎼ 𝒳 = arbitrary set
⎼ 𝒴 = arbitrary metric space
⎼ ℋ = hypothesis class
⎼ “Finite projection” of ℋ = finite subset of ℋ|( for finite S ⊆ 𝒳

Theorem: Suppose any finite projection of ℋ can be learned with 
realizable complexity 𝑚. Then ℋ is learnable with at most 𝑚 𝜀/2
samples. 
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⟺ finite projections learnable with 𝑚
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Improper 𝒴: compactness can fail by at 
least a factor of 2. Maybe more? 
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Transductive learning

Transductive learning model
1. Adversary selects n datapoints
2. One label removed uniformly at 

random
3. Fill in the blank

Error = average loss over uniformly        
asdfsdfrandom “?”

Looks more fine grained than iid model, 
i.e., sample by sample

However, essentially equivalent to PAC 
(Sample complexities equivalent up to log factors)

Key point: one-inclusion graphs (OIGs) 
perfect to study transductive model
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Bipartite view:
⎼ LHS = variables valued in 𝒴
⎼ RHS = functions tracking error of 

ground truth
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Bipartite view:
⎼ LHS = variables valued in 𝒴
⎼ RHS = functions tracking error of 

ground truth
⎼ E.g., ℎ! 𝑒!, 𝑒", 𝑒# = ℓ 1, 𝑒! + ℓ 1, 𝑒" + ℓ 1, 𝑒#

Now, learner = assignment of variables

Goal: assign variables to keep all 
functions below ϵ
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⎼ 𝑅 = set of proper functions, each of form 
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4 ℓ1 →ℝ56

Pre-image of compact is compact



Realizable compactness

Theorem: Let 
⎼ 𝐿 = set of variables, valued in metric space
⎼ 𝑅 = set of proper functions, each of form 

∏123
4 ℓ1 →ℝ56

Then the following are equivalent: 
1. Can assign variables to keep all functions 

≤ 𝜖
2. For each finite S ⊆ 𝑅, can assign 

variables to keep those functions ≤ 𝜖



Realizable compactness

Theorem: Let 
⎼ 𝐿 = set of variables, valued in metric space
⎼ 𝑅 = set of proper functions, each of form 

∏123
4 ℓ1 →ℝ56

Then the following are equivalent: 
1. Can assign variables to keep all functions 

≤ 𝜖
2. For each finite S ⊆ 𝑅, can assign 

variables to keep those functions ≤ 𝜖

Proof sketch: 
1 ⟹ 2: immediate

2 ⟹ 1: Zorn’s lemma



Realizable compactness

Theorem: Let 
⎼ 𝐿 = set of variables, valued in metric space
⎼ 𝑅 = set of proper functions, each of form 

∏123
4 ℓ1 →ℝ56

Then the following are equivalent: 
1. Can assign variables to keep all functions 

≤ 𝜖
2. For each finite S ⊆ 𝑅, can assign 

variables to keep those functions ≤ 𝜖

Proof sketch: 
1 ⟹ 2: immediate

2 ⟹ 1: Zorn’s lemma
⎼ 𝒫 = partial assignments of variables that 

can be completed to satisfy any finite S ⊆ 𝑅
⎼ Any P ∈ 𝒫 can have one free variable 

assigned
(Use finite intersection property of compact sets) 

⎼ Chains in 𝒫 have upper bounds
(Use fact that each r ∈ 𝑅 depends upon finitely many variables)

⎼ Thus maximal element = total assignment



Realizable compactness

Theorem: Let 
⎼ 𝐿 = set of variables, valued in metric space
⎼ 𝑅 = set of proper functions, each of form 

∏123
4 ℓ1 →ℝ56

Then the following are equivalent: 
1. Can assign variables to keep all functions 

≤ 𝜖
2. For each finite S ⊆ 𝑅, can assign 

variables to keep those functions ≤ 𝜖

For learning:
⎼ 𝐿 = LHS nodes, thought of as variables in 𝒴
⎼ 𝑅 = RHS nodes, tracking transductive error

⎼ E.g., ℎ! 𝑒!, 𝑒", 𝑒# = ℓ 1, 𝑒! + ℓ 1, 𝑒" + ℓ 1, 𝑒#
⎼ When 𝒴 is proper, these functions are proper, b/c 

continuous & reflect bounded sets

1. = learning ℋ
2. = learning ℋ’s finite projections



Realizable noncompactness

Build a pathological 𝒴:
⎼ 𝒴 = 𝒜 ∪ ℬ
⎼ 𝒜 = infinite set, points all distance 2 apart
⎼ ℬ = points indexed by finite subsets of𝒜,    

aaaae.g., 𝑏+ for 𝐴 ⊆ 𝒜. 
⎼ 𝑏8 is distance 1 from points in 𝐴 and ℬ, 

distance 2 from 𝒜 ∖ 𝐴

In English: 
⎼ 𝒴 = infinite set of points all distance 2 apart
⎼ But each finite Y ⊆ 𝒴 has a “center” 

distance 1 from all points in Y
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Build a pathological 𝒴:
⎼ 𝒴 = 𝒜 ∪ ℬ
⎼ 𝒜 = infinite set, points all distance 2 apart
⎼ ℬ = points indexed by finite subsets of𝒜,    

aaaae.g., 𝑏+ for 𝐴 ⊆ 𝒜. 
⎼ 𝑏8 is distance 1 from points in 𝐴 and ℬ, 

distance 2 from 𝒜 ∖ 𝐴

In English: 
⎼ 𝒴 = infinite set of points all distance 2 apart
⎼ But each finite Y ⊆ 𝒴 has a “center” 

distance 1 from all points in Y

Let ℋ be very complex class (e.g., 𝒴𝒳)
⎼ Learning ℋ:  pay distance 2 in worst case
⎼ Learning finite projection: promised to only 

see labels from Y ⊆ 𝒴
⎼ Predict Y’s “center” to lock in loss ≤ 1

Hence failure of compactness by factor 2 
⎼ But this is tight: similar(ish) use of Zorn’s lemma 
⎼ Factor 2 arises from triangle inequality



Beyond realizable

Agnostic and distribution-family: use abstract 
compactness result, black-box
⎼ 𝐿 = transductive learning instance, with “?”

⎼ E.g., 𝑦#, 𝑦$, ? , 𝑦%
⎼ Thought of as variable valued in 𝒴

⎼ R = excess transductive error of ground truth
⎼ Subtract error of best ℎ ∈ ℋ

Exact compactness for proper 𝒴
Failure by factor of 2 for improper 𝒴. Maybe 
more? 
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Beyond realizable

Agnostic and distribution-family: use abstract 
compactness result, black-box
⎼ 𝐿 = transductive learning instances, with “?”

⎼ E.g., 𝑦#, 𝑦$, ? , 𝑦%
⎼ Thought of as variable valued in 𝒴

⎼ 𝑅 = excess transductive error of ground truths
⎼ Subtract error of best ℎ ∈ ℋ

Exact compactness for proper 𝒴

By same counterexample, fails by factor of 2 for 
improper 𝒴. Maybe more? 

Theorem: Let 
⎼ 𝐿 = set of variables, valued in metric space
⎼ 𝑅 = set of proper functions, each of form 

∏123
4 ℓ1 →ℝ56

Then the following are equivalent: 
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with arbitrary # labels. 
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Bonus result: Hall’s theorem

Proper 𝒴: covers almost everything
⎼ ℝ4 and its closed subsets (any norm)
⎼ Finite metric spaces
⎼ Compact metric spaces

But doesn’t cover multiclass classification 
with arbitrary # labels. Nevertheless, it’s 
compact!

Theorem: Classification enjoys exact
compactness, in both the realizable and 
agnostic cases. 

Proof sketch:
⎼ Under 0-1 loss, transductive error equals the 

indegree of a RHS node
⎼ Complete “?” by picking desired ground truth

⎼ Learning becomes a matching problem

⎼ Key step: our compactness result implies M. 
Hall’s theorem for infinite graphs
⎼ Uses fact that RHS degrees are all finite

⎼ Thus matchability ≡ Hall’s criterion. Done!
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Thank you
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