Learnability Is a Compact Property

Julian AsilisSiddartha DevicShaddin DughmiVatsal SharanShang-Hua Teng

Warm-up: binary classification

<u>Known</u>

Domain \mathcal{X} Label set $\mathcal{Y} = \{0, 1\}$ Class $\mathcal{H} \subseteq \{0, 1\}^{\mathcal{X}}$

<u>Unknown</u>

Distribution \mathcal{D} on \mathcal{X} (Realizable learning: \mathcal{D} arbitrary)

Ground truth $h^* \in \mathcal{H}$

Warm-up: binary classification

<u>Known</u>

Domain ${\mathcal X}$

Label set $\mathcal{Y} = \{0, 1\}$

 $\mathsf{Class}\,\mathcal{H} \subseteq \{0,1\}^{\mathcal{X}}$

<u>Goal</u>

Given iid draws from \mathcal{D} (labeled by h^*), guess h^* !

Judged by error, $\mathbb{P}_{x \sim \mathcal{D}}(f(x) \neq h^*(x))$

<u>Unknown</u>

Distribution \mathcal{D} on \mathcal{X} (Realizable learning: \mathcal{D} arbitrary)

Ground truth $h^* \in \mathcal{H}$

Warm-up: binary classification

<u>Known</u>

Domain ${\mathcal X}$

Label set $\mathcal{Y} = \{0, 1\}$

 $\mathsf{Class}\ \mathcal{H} \subseteq \{0,1\}^{\mathcal{X}}$

<u>Unknown</u>

Distribution \mathcal{D} on \mathcal{X} (Realizable learning: \mathcal{D} arbitrary)

Ground truth $h^* \in \mathcal{H}$

<u>Goal</u>

Given iid draws from \mathcal{D} (labeled by h^*), guess h^* !

Judged by error, $\mathbb{P}_{x \sim \mathcal{D}}(f(x) \neq h^*(x))$

> Can \mathcal{H} be learned with error $\rightarrow 0$ as # samples $\rightarrow \infty$?

VC dimension is all you need

VC dimension

 \mathcal{H} shatters $S = (x_1, ..., x_n)$ when $\mathcal{H}|_S = \{0, 1\}^n$

 $VC(\mathcal{H}) =$ size of largest shattered set

Fundamental theorem:

 \mathcal{H} is learnable \Leftrightarrow VC $(\mathcal{H}) < \infty$. Attaining error $\leq \varepsilon$ w.h.p. requires $\Theta(\frac{VC(\mathcal{H})}{\varepsilon})$ points.

VC dimension is all you need

VC dimension

 \mathcal{H} shatters $S = (x_1, ..., x_n)$ when $\mathcal{H}|_S = \{0, 1\}^n$

 $VC(\mathcal{H}) =$ size of largest shattered set

Fundamental theorem:

 \mathcal{H} is learnable \Leftrightarrow VC $(\mathcal{H}) < \infty$. Attaining error $\leq \varepsilon$ w.h.p. requires $\Theta(\frac{VC(\mathcal{H})}{\varepsilon})$ points. Binary classification solved 🙂

An observation: VC dimension only "knows" about finite projections of \mathcal{H} ...

Why is that enough?

Binary classification is "compact"

VC theory reveals compactness:

- If \mathcal{H} 's finite projections look good, then \mathcal{H} is learnable
- Equiv: if \mathcal{H} is not learnable, it has arbitrarily bad finite projections

Binary classification is "compact"

VC theory reveals compactness:

Why does this work?

- If \mathcal{H} 's finite projections look good, then \mathcal{H} is learnable
- Equiv: if ${\mathcal H}$ is not learnable, it has arbitrarily bad finite projections

When learning \mathcal{H} , distribution \mathcal{D} can have infinite support, even be continuous!

Considering finite projections $\mathcal{H}|_S$ doesn't pick up on hardness of learning these distributions...

Much of learning theory follows the skeleton of VC dimension

- 1. Say \mathcal{H} shatters $S = (x_1, ..., x_n)$ if $\mathcal{H}|_S$ has a finite subset such that...
- 2. Let $d = d(\mathcal{H})$ be the size of the largest shattered set
- 3. Prove \mathcal{H} is learnable $\Leftrightarrow d < \infty$

Much of learning theory follows the skeleton of VC dimension

- 1. Say \mathcal{H} shatters $S = (x_1, ..., x_n)$ if $\mathcal{H}|_S$ has a finite subset such that...
- 2. Let $d = d(\mathcal{H})$ be the size of the largest shattered set
- 3. Prove \mathcal{H} is learnable $\Leftrightarrow d < \infty$

Examples

- Fat shattering dimension
- Graph dimension
- Natarajan dimension
- DS dimension
- Littlestone dimension

Much of learning theory follows the skeleton of VC dimension

- 1. Say \mathcal{H} shatters $S = (x_1, ..., x_n)$ if $\mathcal{H}|_S$ has a finite subset such that...
- 2. Let $d = d(\mathcal{H})$ be the size of the largest shattered set
- 3. Prove \mathcal{H} is learnable $\Leftrightarrow d < \infty$

Examples

- Fat shattering dimension
- Graph dimension
- Natarajan dimension
- DS dimension
- Littlestone dimension

Why is this happening? Will we eventually describe all kinds of learning in this way?

Much of learning theory follows the skeleton of VC dimension

- 1. Say \mathcal{H} shatters $S = (x_1, ..., x_n)$ if $\mathcal{H}|_S$ has a finite subset such that...
- 2. Let $d = d(\mathcal{H})$ be the size of the largest shattered set
- 3. Prove \mathcal{H} is learnable $\Leftrightarrow d < \infty$

Examples

- Fat shattering dimension
- Graph dimension
- Natarajan dimension
- DS dimension
- Littlestone dimension

Why is this happening? Will we eventually describe all kinds of learning in this way?

No.

EMX Learning

 $\begin{aligned} \mathcal{X} &= \mathbb{R}, \mathcal{Y} = \{0, 1\} \\ \mathcal{H} &= \{h : |h^{-1}(1)| < \infty \} \end{aligned}$

Given h^* , \mathcal{D} must be supported on $(h^*)^{-1}(1)$. I.e., only see the label 1

Learner must be *proper*, emit an $h \in \mathcal{H}$

EMX Learning

$$\begin{aligned} \mathcal{X} &= \mathbb{R}, \mathcal{Y} = \{0, 1\} \\ \mathcal{H} &= \{h : |h^{-1}(1)| < \infty \} \end{aligned}$$

Given h^* , \mathcal{D} must be supported on $(h^*)^{-1}(1)$. I.e., only see the label 1

Learner must be *proper*, emit an $h \in \mathcal{H}$

In English:

- Ground set ${\mathcal X}$
- Distribution $\mathcal D$ over $\mathcal X$ (finite support)
- Given iid samples from \mathcal{D} , pick finite $S \subseteq \mathcal{X}$ with maximum \mathcal{D} -measure

When \mathcal{X} is finite, trivial. Pick S = \mathcal{X} !

What about $\mathcal{X} = \mathbb{R}$?

For infinite \mathcal{X} , learnability depends on $|\mathcal{X}|$

(Such that \mathcal{H} is learnable $\Leftrightarrow |\mathcal{X}| < \aleph_{\omega}$. Thus, undecidable when $\mathcal{X} = \mathbb{R}$.)

If \mathcal{X} too large, \mathcal{H} is not learnable. Even though all its finite restrictions are easy!

Failure of compactness! (When learners are required to be proper)

In English:

- Ground set ${\mathcal X}$
- Distribution $\mathcal D$ over $\mathcal X$ (finite support)
- Given iid samples from \mathcal{D} , pick finite $S \subseteq \mathcal{X}$ with maximum \mathcal{D} -measure

When \mathcal{X} is finite, trivial. Pick S = \mathcal{X} !

What about $\mathcal{X} = \mathbb{R}$?

For infinite \mathcal{X} , learnability depends on $|\mathcal{X}|$

(Such that \mathcal{H} is learnable $\Leftrightarrow |\mathcal{X}| < \aleph_{\omega}$. Thus, undecidable when $\mathcal{X} = \mathbb{R}$.)

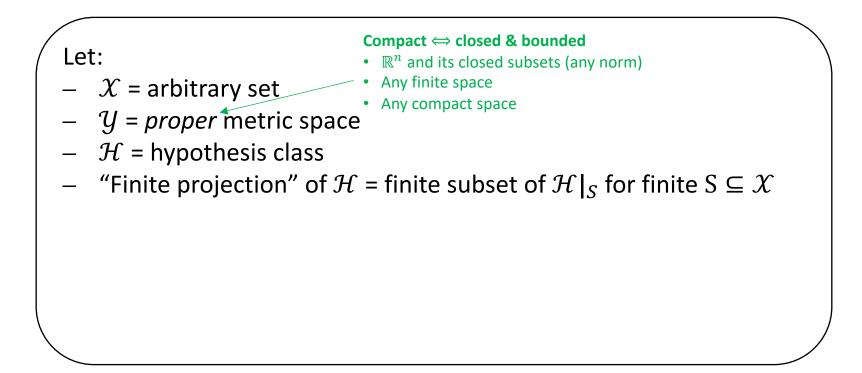
Where and why does compactness appear in improper supervised learning?

If \mathcal{X} too large, \mathcal{H} is not learnable. Even though all its finite restrictions are easy!

Failure of compactness! (When learners are required to be proper) *In light of EMX learning, why do standard learning paradigms <u>happen</u> <i>to be compact?*

Let:

- \mathcal{X} = arbitrary set
- \mathcal{Y} = proper metric space
- \mathcal{H} = hypothesis class
- "Finite projection" of \mathcal{H} = finite subset of $\mathcal{H}|_S$ for finite $S \subseteq \mathcal{X}$



Let:

- \mathcal{X} = arbitrary set
- \mathcal{Y} = proper metric space
- \mathcal{H} = hypothesis class
- "Finite projection" of \mathcal{H} = finite subset of $\mathcal{H}|_S$ for finite $S \subseteq \mathcal{X}$

Theorem: For realizable learning, the following are equivalent,

- 1. \mathcal{H} can be learned with transductive sample complexity m
- 2. Any finite projection of $\mathcal H$ can be learned with complexity m

Let:

- \mathcal{X} = arbitrary set
- \mathcal{Y} = proper metric space
- \mathcal{H} = hypothesis class
- "Finite projection" of \mathcal{H} = finite subset of $\mathcal{H}|_S$ for finite $S \subseteq \mathcal{X}$

Theorem: For realizable learning, the following are equivalent,

- 1. \mathcal{H} can be learned with transductive sample complexity m
- 2. Any finite projection of $\mathcal H$ can be learned with complexity m

Very general and **exact** form of compactness!

What if $\mathcal Y$ isn't proper?

Let:

- \mathcal{X} = arbitrary set
- $\mathcal{Y} =$ <u>arbitrary</u> metric space
- \mathcal{H} = hypothesis class
- "Finite projection" of \mathcal{H} = finite subset of $\mathcal{H}|_S$ for finite $S \subseteq \mathcal{X}$

Let:

- \mathcal{X} = arbitrary set
- $\mathcal{Y} =$ <u>arbitrary</u> metric space
- \mathcal{H} = hypothesis class
- "Finite projection" of \mathcal{H} = finite subset of $\mathcal{H}|_S$ for finite $S \subseteq \mathcal{X}$

Theorem: For realizable learning, there exists an (improper) \mathcal{Y} s.t.

- 1. Any finite projection of $\mathcal H$ can be learned with complexity m
- 2. Learning \mathcal{H} requires $m_{\mathcal{H}} > m$ samples, with $m_{\mathcal{H}}(\varepsilon) \ge m(\varepsilon/2)$ for some ε

Improper \mathcal{Y} : compactness can fail by at least a factor of 2

Let:

- \mathcal{X} = arbitrary set
- $\mathcal{Y} =$ <u>arbitrary</u> metric space
- \mathcal{H} = hypothesis class
- "Finite projection" of \mathcal{H} = finite subset of $\mathcal{H}|_S$ for finite $S \subseteq \mathcal{X}$

Theorem: Suppose any finite projection of \mathcal{H} can be learned with realizable complexity m. Then \mathcal{H} is learnable with at most $m(\varepsilon/2)$ samples.

Improper \mathcal{Y} : compactness can fail by at least **most** a factor of 2.

Complete characterization of compactness for realizable learning with metric losses!

Beyond the realizable case

Agnostic learning

 ${\mathcal D}$ can be any distribution on ${\mathcal X} \times {\mathcal Y}$

Proper \mathcal{Y} : **exact** compactness of sample complexity! \mathcal{H} learnable with m samples \Leftrightarrow finite projections learnable with msamples

Improper \mathcal{Y} : compactness can fail by at least a factor of 2. Maybe more?

Beyond the realizable case

Agnostic learning

 ${\mathcal D}$ can be any distribution on ${\mathcal X} \times {\mathcal Y}$

Proper \mathcal{Y} : **exact** compactness of sample complexity! \mathcal{H} learnable with m samples \Leftrightarrow finite projections learnable with msamples

Improper \mathcal{Y} : compactness can fail by at least a factor of 2. Maybe more?

Distribution-family learning

 \mathcal{D} constrained to certain distributions on $\mathcal{X} \times \mathcal{Y}$, i.e., $\mathcal{D} \in \mathbb{D}$

Call \mathbb{D} well-behaved if it is closed under empirical distributions $(\forall \mathcal{D} \in \mathbb{D} \text{ and } S \sim \mathcal{D}^n, \text{Unif}(S) \in \mathbb{D}. \text{ E.g., partial, EMX, etc.})$

Proper \mathcal{Y} , well-behaved \mathbb{D} : **exact** compactness of sample complexity

Beyond the realizable case

Agnostic learning

 ${\mathcal D}$ can be any distribution on ${\mathcal X} \times {\mathcal Y}$

Proper \mathcal{Y} : **exact** compactness of sample complexity! \mathcal{H} learnable with m samples \Leftrightarrow finite projections learnable with msamples

Improper \mathcal{Y} : compactness can fail by at least a factor of 2. Maybe more?

Distribution-family learning

 \mathcal{D} constrained to certain distributions on $\mathcal{X} \times \mathcal{Y}$, i.e., $\mathcal{D} \in \mathbb{D}$

Call \mathbb{D} well-behaved if it is closed under empirical distributions $(\forall \mathcal{D} \in \mathbb{D} \text{ and } S \sim \mathcal{D}^n, \text{Unif}(S) \in \mathbb{D}. \text{ E.g., partial, EMX, etc.})$

Proper \mathcal{Y} , well-behaved \mathbb{D} : **exact** compactness of sample complexity

EMX pathology relies on constraining to proper learners!

Transductive learning

Transductive learning model

- 1. Adversary selects *n* datapoints
- 2. One label removed uniformly at random
- 3. Fill in the blank

Error = average loss over uniformly random "?"

Transductive learning

Transductive learning model

- 1. Adversary selects *n* datapoints
- 2. One label removed uniformly at random
- 3. Fill in the blank

Looks more fine grained than iid model, i.e., sample by sample

However, essentially equivalent to PAC (Sample complexities equivalent up to log factors)

Key point: one-inclusion graphs (OIGs) perfect to study transductive model

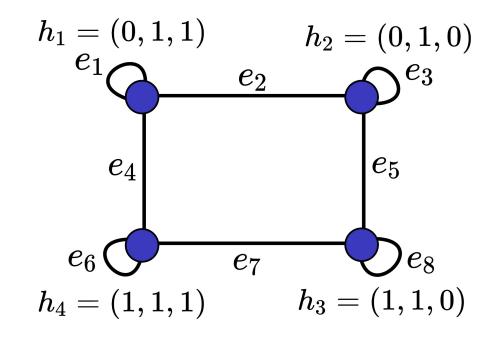
Error = average loss over uniformly random "?"

Realizable **one-inclusion graph** of \mathcal{H} on $S \in \mathcal{X}^n$:

- Vertex set: $\mathcal{H}|_S$
- Edge set: group hypotheses that agree on n-1 points

Realizable **one-inclusion graph** of \mathcal{H} on $S \in \mathcal{X}^n$:

- Vertex set: $\mathcal{H}|_{S}$
- Edge set: group hypotheses that agree on n-1 points

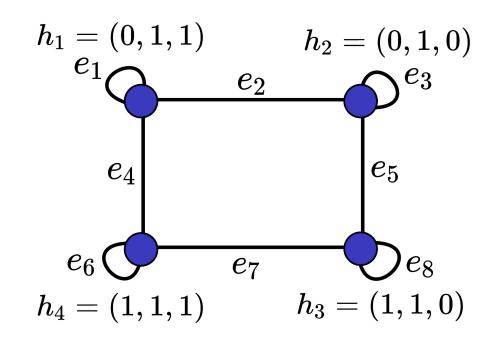


Realizable **one-inclusion graph** of \mathcal{H} on $S \in \mathcal{X}^n$:

- Vertex set: $\mathcal{H}|_S$
- Edge set: group hypotheses that agree on n-1 points

Learner for \mathcal{H} = orientation of OIGs

- edge = training set + unlabeled test point - e.g., $e_2 = (0, 1, ?)$
- Completing "?" = choice of incident node

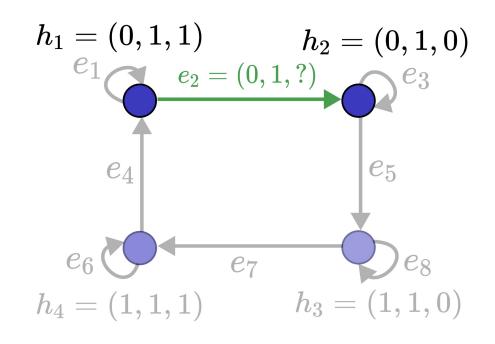


Realizable **one-inclusion graph** of \mathcal{H} on $S \in \mathcal{X}^n$:

- Vertex set: $\mathcal{H}|_S$
- Edge set: group hypotheses that agree on n-1 points

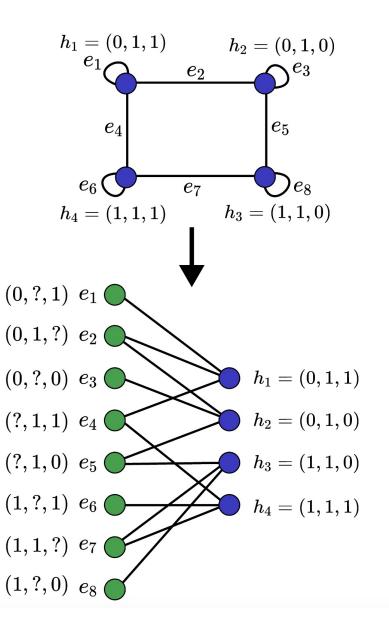
Learner for \mathcal{H} = orientation of OIGs

- edge = training set + unlabeled test point - e.g., $e_2 = (0, 1, ?)$
- Completing "?" = choice of incident node



Bipartite view:

- LHS = variables valued in \mathcal{Y}
- RHS = *functions* tracking error of ground truth
 - E.g., $h_4(e_4, e_6, e_7) = \ell(1, e_4) + \ell(1, e_6) + \ell(1, e_7)$

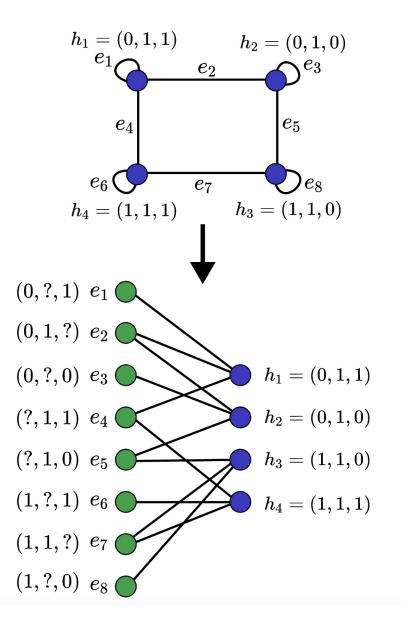


Bipartite view:

- LHS = variables valued in \mathcal{Y}
- RHS = *functions* tracking error of ground truth
 - E.g., $h_4(e_4, e_6, e_7) = \ell(1, e_4) + \ell(1, e_6) + \ell(1, e_7)$

Now, learner = assignment of variables

Goal: assign variables to keep all functions below $\boldsymbol{\varepsilon}$



Realizable compactness

Theorem: Let

- L = set of variables, valued in metric space
- R = set of proper functions, each of form $\prod_{i=1}^{n} \ell_i \to \mathbb{R}_{\geq 0}$

Pre-image of compact is compact

Realizable compactness

Theorem: Let

- L = set of variables, valued in metric space
- R = set of proper functions, each of form $\prod_{i=1}^{n} \ell_i \to \mathbb{R}_{\geq 0}$

Then the following are equivalent:

- 1. Can assign variables to keep all functions $\leq \epsilon$
- 2. For each finite $S \subseteq R$, can assign variables to keep those functions $\leq \epsilon$

Theorem: Let

- L = set of variables, valued in metric space
- R = set of proper functions, each of form $\prod_{i=1}^{n} \ell_i \to \mathbb{R}_{\geq 0}$

Then the following are equivalent:

- 1. Can assign variables to keep all functions $\leq \epsilon$
- 2. For each finite $S \subseteq R$, can assign variables to keep those functions $\leq \epsilon$

Proof sketch:

- $1 \Longrightarrow 2$: immediate
- $2 \Longrightarrow 1$: Zorn's lemma

Theorem: Let

- L = set of variables, valued in metric space
- R = set of proper functions, each of form $\prod_{i=1}^{n} \ell_i \to \mathbb{R}_{\geq 0}$

Then the following are equivalent:

- 1. Can assign variables to keep all functions $\leq \epsilon$
- 2. For each finite $S \subseteq R$, can assign variables to keep those functions $\leq \epsilon$

Proof sketch:

- $1 \Longrightarrow 2$: immediate
- $2 \Longrightarrow 1$: Zorn's lemma
- \mathcal{P} = partial assignments of variables that can be completed to satisfy any finite S $\subseteq R$
- Any P ∈ \mathcal{P} can have one free variable assigned

(Use finite intersection property of compact sets)

Chains in \mathcal{P} have upper bounds

(Use fact that each $\mathbf{r} \in R$ depends upon finitely many variables)

Thus maximal element = total assignment

Theorem: Let

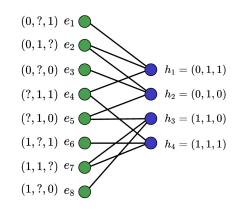
- L = set of variables, valued in metric space
- R = set of proper functions, each of form $\prod_{i=1}^{n} \ell_i \to \mathbb{R}_{\geq 0}$

Then the following are equivalent:

- 1. Can assign variables to keep all functions $\leq \epsilon$
- 2. For each finite $S \subseteq R$, can assign variables to keep those functions $\leq \epsilon$

For learning:

- -L = LHS nodes, thought of as variables in \mathcal{Y}
- -R = RHS nodes, tracking transductive error
 - E.g., $h_4(e_4, e_6, e_7) = \ell(1, e_4) + \ell(1, e_6) + \ell(1, e_7)$
 - When Y is proper, these functions are proper, b/c continuous & reflect bounded sets
- 1. = learning \mathcal{H}
- 2. = learning \mathcal{H} 's finite projections



Build a pathological \mathcal{Y} :

 $-\mathcal{Y}=\mathcal{A}\cup\mathcal{B}$

 $-\mathcal{A} = \text{infinite set, points all distance 2 apart}$

Build a pathological \mathcal{Y} :

- $-\mathcal{Y}=\mathcal{A}\cup\mathcal{B}$
- $-\mathcal{A} = \text{infinite set, points all distance 2 apart}$
- $-\mathcal{B} = \text{points indexed by finite subsets of } \mathcal{A},$ e.g., b_A for $A \subseteq \mathcal{A}$.
 - $\begin{array}{l} \ b_A \text{ is distance 1 from points in } A \text{ and } \mathcal{B}, \\ \text{distance 2 from } \mathcal{A} \setminus A \end{array}$

Build a pathological \mathcal{Y} :

 $-\mathcal{Y}=\mathcal{A}\cup\mathcal{B}$

- $-\mathcal{A} = \text{infinite set, points all distance 2 apart}$
- $-\mathcal{B} = \text{points indexed by finite subsets of } \mathcal{A},$ e.g., b_A for $A \subseteq \mathcal{A}$.
 - b_A is distance 1 from points in A and \mathcal{B} , distance 2 from $\mathcal{A} \setminus A$

In English:

- $-\mathcal{Y}$ = infinite set of points all distance 2 apart
- But each finite $Y \subseteq \mathcal{Y}$ has a "center" distance 1 from all points in Y

Build a pathological \mathcal{Y} :

 $-\mathcal{Y}=\mathcal{A}\cup\mathcal{B}$

- $-\mathcal{A} = \text{infinite set, points all distance 2 apart}$
- $-\mathcal{B} = \text{points indexed by finite subsets of } \mathcal{A},$ e.g., b_A for $A \subseteq \mathcal{A}$.
 - b_A is distance 1 from points in A and \mathcal{B} , distance 2 from $\mathcal{A} \setminus A$

In English:

- $-\mathcal{Y}$ = infinite set of points all distance 2 apart
- But each finite $Y \subseteq \mathcal{Y}$ has a "center" distance 1 from all points in Y

Let $\mathcal H$ be very complex class (e.g., $\mathcal Y^{\mathcal X}$)

- Learning \mathcal{H} : pay distance 2 in worst case
- Learning finite projection: promised to only see labels from $\mathbf{Y} \subseteq \mathcal{Y}$
 - Predict Y's "center" to lock in loss ≤ 1

Build a pathological \mathcal{Y} :

 $-\mathcal{Y}=\mathcal{A}\cup\mathcal{B}$

- $-\mathcal{A} = \text{infinite set, points all distance 2 apart}$
- $-\mathcal{B} = \text{points indexed by finite subsets of } \mathcal{A},$ e.g., b_A for $A \subseteq \mathcal{A}$.
 - b_A is distance 1 from points in A and \mathcal{B} , distance 2 from $\mathcal{A} \setminus A$

In English:

- $-\mathcal{Y}$ = infinite set of points all distance 2 apart
- But each finite $Y \subseteq \mathcal{Y}$ has a "center" distance 1 from all points in Y

Let \mathcal{H} be very complex class (e.g., $\mathcal{Y}^{\mathcal{X}}$)

- Learning \mathcal{H} : pay distance 2 in worst case
- Learning finite projection: promised to only see labels from $\mathbf{Y} \subseteq \mathcal{Y}$
 - Predict Y's "center" to lock in loss ≤ 1

Hence failure of compactness by factor 2

- But this is tight: similar(ish) use of Zorn's lemma
- Factor 2 arises from triangle inequality

Beyond realizable

Agnostic and distribution-family: use abstract compactness result, black-box

Theorem: Let

- L = set of variables, valued in metric space
- R = set of proper functions, each of form $\prod_{i=1}^{n} \ell_i \to \mathbb{R}_{\geq 0}$

Then the following are equivalent:

- 1. Can assign variables to keep all functions $\leq \epsilon$
- 2. For each finite $S \subseteq R$, can assign variables to keep those functions $\leq \epsilon$

Beyond realizable

Agnostic and distribution-family: use abstract compactness result, black-box

- -L = transductive learning instances, with "?"
 - E.g., $(y_1, y_2, ?, y_4)$
 - $-\,$ Thought of as variable valued in ${\cal Y}$
- $-R = \underline{\text{excess}}$ transductive error of ground truths
 - Subtract error of best $h \in \mathcal{H}$

Theorem: Let

- L = set of variables, valued in metric space
- R = set of proper functions, each of form $\prod_{i=1}^{n} \ell_i \to \mathbb{R}_{\geq 0}$

Then the following are equivalent:

- 1. Can assign variables to keep all functions $\leq \epsilon$
- 2. For each finite $S \subseteq R$, can assign variables to keep those functions $\leq \epsilon$

Beyond realizable

Agnostic and distribution-family: use abstract compactness result, black-box

- -L = transductive learning instances, with "?"
 - E.g., $(y_1, y_2, ?, y_4)$
 - $-\,$ Thought of as variable valued in ${\cal Y}$
- $-R = \underline{\text{excess}}$ transductive error of ground truths
 - $\ \text{Subtract error of best} \ h \in \mathcal{H}$

Exact compactness for proper ${\mathcal Y}$

By same counterexample, fails by factor of 2 for improper \mathcal{Y} . Maybe more?

Theorem: Let

- L = set of variables, valued in metric space
- R = set of proper functions, each of form $\prod_{i=1}^{n} \ell_i \to \mathbb{R}_{\geq 0}$

Then the following are equivalent:

- 1. Can assign variables to keep all functions $\leq \epsilon$
- 2. For each finite $S \subseteq R$, can assign variables to keep those functions $\leq \epsilon$

Proper \mathcal{Y} : covers almost everything

- \mathbb{R}^n and its closed subsets (any norm)
- Finite metric spaces
- Compact metric spaces

But doesn't cover multiclass classification with arbitrary # labels.

Proper \mathcal{Y} : covers almost everything

- \mathbb{R}^n and its closed subsets (any norm)
- Finite metric spaces
- Compact metric spaces

But doesn't cover multiclass classification with arbitrary # labels. Nevertheless, it's compact!

Theorem: Classification enjoys *exact* compactness, in both the realizable and agnostic cases.

Proper \mathcal{Y} : covers almost everything

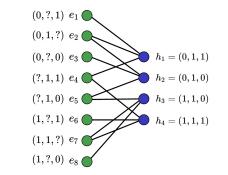
- \mathbb{R}^n and its closed subsets (any norm)
- Finite metric spaces
- Compact metric spaces

But doesn't cover multiclass classification with arbitrary # labels. Nevertheless, it's compact!

Theorem: Classification enjoys *exact* compactness, in both the realizable and agnostic cases.

Proof sketch:

- Under 0-1 loss, transductive error equals the indegree of a RHS node
 - Complete "?" by picking desired ground truth



Learning becomes a matching problem

Proper \mathcal{Y} : covers almost everything

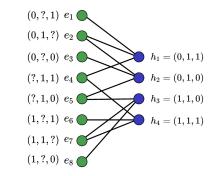
- \mathbb{R}^n and its closed subsets (any norm)
- Finite metric spaces
- Compact metric spaces

But doesn't cover multiclass classification with arbitrary # labels. Nevertheless, it's compact!

Theorem: Classification enjoys *exact* compactness, in both the realizable and agnostic cases.

Proof sketch:

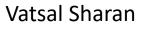
- Under 0-1 loss, transductive error equals the indegree of a RHS node
 - Complete "?" by picking desired ground truth



- Learning becomes a matching problem
- Key step: our compactness result implies M.
 Hall's theorem for infinite graphs
 - Uses fact that RHS degrees are all finite
- Thus matchability \equiv Hall's criterion. Done!

Thank you

Sid Devic



Shaddin Dughmi

